

MRS conference San Francisco April 2013

Symposium V: Nanoscale heat transport – From fundamentals to devices

Thermal conductivity of Si–Ge-based nanostructures

Katrin Bertram, Bodo Fuhrmann, Nadine Geyer, Aleksandr Tonkikh, Nicole Wollschläger, Peter Werner, <u>Hartmut S. Leipner</u>

> Martin-Luther-Universität Halle–Wittenberg Max-Planck-Institut für Mikrostrukturphysik Halle

GEFÖRDERT VON

All rights reserved © 2013 CMAT Halle

WING

für Industrie und Gesellschaft

Reduction in thermal conductivity

Cross-plane transport in $SL \rightarrow Coherent$ phonon scattering at interfaces

$$\kappa_{\rm ph} = \frac{1}{3}C\upsilon\ell$$

(*C* lattice heat capacity, v speed of sound, ℓ mean free path of phonons)

If layer thickness $a < \ell$, the thermal conductivity of the lattice κ_{ph} is reduced.

Phonon scattering

Superlattices, composites, quantum dot SLs, random multilayers

MD Simulation

[Frachioni, White: J Appl Phys 112 (2012) 14320]

MBE of Si-Ge layers

• Stack of alternating layers of Si and a $Si_{1-x}Ge_x$ alloy

Precision of single layers: ± 0.2 nm

Quantum dot Si-Ge superlattice

(001), (111) orientation of the Si substrate

◆ Si (111) → flat layers

◆ Si (100) → Ge islands (density ~ $10^9...10^{11}$ cm⁻²)

100 nm

AA Tonkikh *et al* Thin Sol Films (2011) doi: 10.1016/j.tsf.2011.10.049

3ω measurements

- ✦ Deposition of a 100 nm insulating Al₂O₃ layer by ALD
- Reference sample without the multilayer structure
- Differential 3ω measurement of the thermal conductivity of thin films, $U_{3\omega} = f(\kappa)$

Thin film thermal conductivity

1D heat flow

Measurement with one bolometer stripe, width $2b \gg d_{\rm f}$

 $\Delta T_{\rm f} \rightarrow 1D$ thermal conductivity $\kappa_{\rm 1D}$

2D heat flow

Measurements with two bolometer stripes, b_1 and b_2

 $\Delta T_{\rm f} \rightarrow$ in-plane thermal conductivity κ_{\parallel}

 \rightarrow cross-plane thermal conductivity κ_{\perp}

Bolometric temperature increase ΔT measured in a multilayer and a reference sample as a function of the frequency

Superlattices

Thermal conductivity of periodic SL

In-plane and cross-plane thermal conductivities for SLs with different Ge contents and periods

Random multilayers

1.2 nm Ge + 12 nm Si 1.2 nm Ge + 12 nm Si 1.8 nm Ge + 12 nm Si 0.9 nm Ge + 12 nm Si 1.6 nm Ge + 12 nm Si $6 \times , \approx 600$ nm

0.6 nm Ge + 4.1 nm Si 0.3 nm Ge + 5.1 nm Si 0.8 nm Ge + 4.8 nm Si 0.6 nm Ge + 5.7 nm Si 0.6 nm Ge + 3.8 nm Si $34 \times, \approx 940$ nm

Ge content

2.9 %

3.3 %

Results of random multilayers

Thermal conductivities in a random multilayer (2.9 % Ge) in comparison to a superlattice (3.5 % Ge).

Defect issues

[Watling, Paul: J Appl Phys 110 (2011) 114508]

Conclusions

- Lowest κ_{\perp} for SL with highest Ge content
- κ_⊥ a function of the SL period
 [cf. *e.g.* Rawat *et al*: J Appl Phys 105 (2009)
 024909]
- Only a small reduction in *κ*⊥ for random multilayers[↑] compared to SL[↑] observed due to low mass ratio in the multilayers investigated so far
 - → With higher Ge content,
 - 0.1 W K⁻¹m⁻¹ may be expected !
- Random multilayers exhibit a decrease in κ_{\parallel} by $\approx 50 \%$

[Frachioni, White: J Appl Phys **112** (2012) 14320]

Acknowledgments

 Markus Trutschel, Stefan Kretschmer, Andreas Kipke, Frank Syrowatka, Frank Heyroth, Georg Schmidt (CMAT Halle)
 Johannes de Boor (MPI Halle)
 Matthias Stordeur (HTC Halle)

BMBF WING project SiGe-TE 03X3541

Bundesministe für Bildung und Forschung

© All rights reserved CMAT Halle 2013

Thermal conductivity of Si-Ge nanostructures

- Lowest κ_{\perp} for SL with highest Ge content
- κ_⊥ a function of the SL period
 [cf. *e.g.* Rawat *et al*: J Appl Phys 105 (2009)
 024909]
- Only a small reduction in *κ*⊥ for random multilayers[↑] compared to SL[↑] observed due to low mass ratio in the multilayers investigated so far
 - → With higher Ge content,
 0.1 WK⁻¹m⁻¹ may be expected !
- Random multilayers exhibit a decrease in κ_{\parallel} by $\approx 50 \%$

[Frachioni, White: J Appl Phys **112** (2012) 14320]

References

- Frachioni, White: J Appl Phys **112** (2012) 14320.
- Tonkikh *et al* Thin Sol Films (2011) doi: 10.1016/j.tsf.2011.10.049.
- Watling, Paul: J Appl Phys **110** (2011) 114508.
- Rawat *et al*: J Appl Phys **105** (2009) 024909.